In [1]:
import musicntd.scripts.hide_code as hide
C:\Users\amarmore\AppData\Local\Continuum\anaconda3\envs\NTD_segmentation\lib\site-packages\librosa\util\decorators.py:9: NumbaDeprecationWarning: An import was requested from a module that has moved location.
Import requested from: 'numba.decorators', please update to use 'numba.core.decorators' or pin to Numba version 0.48.0. This alias will not be present in Numba version 0.50.0.
  from numba.decorators import jit as optional_jit
C:\Users\amarmore\AppData\Local\Continuum\anaconda3\envs\NTD_segmentation\lib\site-packages\librosa\util\decorators.py:9: NumbaDeprecationWarning: An import was requested from a module that has moved location.
Import of 'jit' requested from: 'numba.decorators', please update to use 'numba.core.decorators' or pin to Numba version 0.48.0. This alias will not be present in Numba version 0.50.0.
  from numba.decorators import jit as optional_jit

Distribution of segments' sizes in MIREX10

The study of the MIREX10 annotations in [1] shows that segments in this dataset are regular, and mostly centered around the size of 16 onbeats.

We replicated these results by studying the size in number of bars, more adapted to our context.

In [2]:
hide.repartition_bar_lengths_RWCPop()
Number of segments: 1619

We see in this histogram that most of the segment (more than a half) last 8 bars, and that numerous other segments last 4 bars. The other values are less represented. Hence, it should be interesting to enforce these sizes in our algorithm.

Thus, we modified our algorithm to include a regularization function, which favoures certain sizes of segments.

This regularization function only depends on the size of the segment, and is subtracted to the convolution cost. Hence, it's a penalty added to the raw convolution cost. Denoting $c_{b_1, b_2}$ the convolution cost as defined previously (see Notebook 1 or the Appendix which details our algorithm), the "regularized" cost is defined as $c'_{b_1,b_2} = c_{b_1,b_2} - \lambda p(b_2 - b_1 + 1) c_{k8}^{max}$, with:

  • $p(b_2 - b_1 + 1)$ the regularization function, which we will present in next part,
  • $\lambda$, a ponderation to handle the influence of this function,
  • $c_{k8}^{max}$, which represents the maximal convolution score on all intervals of size 8 of the current song, and its associated autosimilarity matrix. The idea of this score is to adapt the penalty to the specific shape of this autosimilarity. It can analogously be seen as a normalization of the raw convolution score: $\frac{c_{b_1,b_2}}{ c_{k8}^{max}} - \lambda p(b_2 - b_1 + 1)$

In this notebook, we will try to define the function $p$ and to study the influence of the parameter $\lambda$.

Definition of the regularization functions

We developped two types of regularization functions:

  • Symmetric functions centered on 8, as in [1]: the idea of this method is to favoure segments lasting 8 bars, as the majority of segments have this size, and to penalize all the other segments as the difference between their size and 8, raised to a certain power. Concretely, this results in:

    $p(n) = |n - 8| ^{\alpha}$

    with $n$ the size of the segment. Here, $\alpha$ is a parameter, and we will try

    • $\alpha = \frac{1}{2}$
    • $\alpha = 1$
    • $\alpha = 2$
  • "Modulo functions": the idea of this method is to enforce specific sizes of segments, based on prior knowledge. They may be more empirical, but are also more adaptable to the need. Our main idea when developping this function was to favoure 8 wihout penalizing too much 4 or 16, that we know are current sizes (especially 4 in RWC Pop, as shown above). In addition, we considered that segments of even sizes should appear more often than segments of odd sizes in western pop music, which is less obvious in the distribution from above.

    We will try 3 different types of function:

    • "Favouring modulo 4": in this case:
      • if $n \equiv 0 \pmod 4, p(n) = 0$,
      • else, if $n \equiv 0 \pmod 2, p(n) = \frac{1}{2}$,
      • else, $p(n) = 1$.
    • "Favouring 8, then modulo 4": in this case:
      • if $n = 8, p(n) = 0$,
      • else, if $n \equiv 0 \pmod 4, p(n) = \frac{1}{4}$,
      • else, if $n \equiv 0 \pmod 2, p(n) = \frac{1}{2}$,
      • else, $p(n) = 1$.
    • "Favouring little segments of 8, then 4": in this case:
      • if $n > 12, p(n) = 100$ (we forbid the algorithm to select segments lasting more than 12 bars),
      • else, if $n = 8, p(n) = 0$,
      • else, if $n \equiv 0 \pmod 4, p(n) = \frac{1}{4}$,
      • else, if $n \equiv 0 \pmod 2, p(n) = \frac{1}{2}$,
      • else, $p(n) = 1$.

We will now test all these functions on the entire RWC Pop database.

  • First, we will fix the ranks to $T' = 32$ (rank for factor $H$) and $B' = 32$ (rank for factor $Q$), and search for the best $\lambda$ in this condition. In this condition, scores will only be plotted for the tolerance window of 0.5 seconds.
  • Secondly, we will keep the best parameter $\lambda$ for the ranks 32,32, and we will try several values of ranks with this $\lambda$ fixed. In this condition, we will show scores with both tolerances 0.5 seconds and 3 seconds, in that order.

As stated in the previous notebook, we now fix the subdivision to 96.

In [3]:
subdivision = 96

Estimating $\lambda$, with fixed ranks $T' = 32$ and $B' = 32$

Symmetric functions centered on 8

$\alpha = \frac{1}{2}$

In [4]:
param_range = [i/100 for i in range(0,100,5)]
hide.convolution_parameter_on_all_rwc(param_range, subdivision = subdivision, penalty_func = "sargentdemi")
c:\users\amarmore\desktop\projects\phd main projects\on git\code\tensor factorization\musicntd\autosimilarity_segmentation.py:43: RuntimeWarning: invalid value encountered in true_divide
  this_array = np.array([list(i/np.linalg.norm(i)) for i in this_array.T]).T
Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
0.0 10.9400 11.7800 7.8700 0.4876 0.5922 0.5259
0.05 10.4800 9.8400 8.3300 0.5229 0.5663 0.5347
0.1 10.2200 8.6800 8.5900 0.5459 0.5514 0.5413
0.15 10.0100 7.8700 8.8000 0.5641 0.5403 0.5450
0.2 9.8500 7.2200 8.9600 0.5799 0.5307 0.5479
0.25 9.7200 6.7200 9.0900 0.5917 0.5231 0.5495
0.3 9.5900 6.3800 9.2200 0.5999 0.5159 0.5495
0.35 9.5300 6.3200 9.2800 0.6016 0.5146 0.5494
0.4 9.4600 6.1300 9.3500 0.6069 0.5115 0.5502
0.45 9.3900 6.2300 9.4200 0.6028 0.5076 0.5463
0.5 9.2300 6.3200 9.5800 0.5950 0.4975 0.5368
0.55 9.1300 6.5200 9.6800 0.5854 0.4924 0.5298
0.6 9.2200 6.5500 9.5900 0.5864 0.4965 0.5330
0.65 9.2200 6.7400 9.5900 0.5800 0.4958 0.5295
0.7 9.2100 6.8600 9.6000 0.5753 0.4940 0.5268
0.75 9.1000 7.0000 9.7100 0.5664 0.4894 0.5206
0.8 9.0400 7.1700 9.7700 0.5616 0.4863 0.5167
0.85 8.9900 7.3500 9.8200 0.5563 0.4841 0.5131
0.9 9.0000 7.3500 9.8100 0.5554 0.4852 0.5133
0.95 8.9600 7.4600 9.8500 0.5518 0.4828 0.5103

For $\alpha = \frac{1}{2}$, the best $\lambda$ (in our range) seems to be 0.4.

$\alpha = 1$

In [5]:
param_range = [i/1000 for i in range(0,100, 5)]
hide.convolution_parameter_on_all_rwc(param_range, subdivision = subdivision, penalty_func = "sargentun")
Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
0.0 10.9400 11.7800 7.8700 0.4876 0.5922 0.5259
0.005 10.8000 10.9700 8.0100 0.5013 0.5840 0.5304
0.01 10.6900 10.5700 8.1200 0.5085 0.5783 0.5321
0.015 10.5900 10.2600 8.2200 0.5146 0.5724 0.5329
0.02 10.5500 9.9900 8.2600 0.5191 0.5700 0.5346
0.025 10.4800 9.7600 8.3300 0.5238 0.5657 0.5356
0.03 10.4800 9.5400 8.3300 0.5295 0.5658 0.5390
0.035 10.3100 9.3000 8.5000 0.5319 0.5568 0.5365
0.04 10.1800 9.1400 8.6300 0.5325 0.5498 0.5337
0.045 10.0900 8.9900 8.7200 0.5341 0.5443 0.5318
0.05 10.1000 8.7600 8.7100 0.5404 0.5444 0.5352
0.055 9.9600 8.6800 8.8500 0.5388 0.5373 0.5313
0.06 9.9200 8.5500 8.8900 0.5419 0.5359 0.5323
0.065 9.8700 8.3300 8.9400 0.5464 0.5330 0.5331
0.07 9.8400 8.2300 8.9700 0.5489 0.5309 0.5337
0.075 9.8500 8.0800 8.9600 0.5538 0.5310 0.5363
0.08 9.8000 7.9100 9.0100 0.5571 0.5283 0.5366
0.085 9.7900 7.7900 9.0200 0.5611 0.5276 0.5382
0.09 9.7700 7.6700 9.0400 0.5647 0.5266 0.5394
0.095 9.7000 7.6500 9.1100 0.5621 0.5226 0.5364

For $\alpha = 1$, the best $\lambda$ seems to be 0.09.

$\alpha = 2$

In [6]:
param_range = [i/1000 for i in range(0,20)]
hide.convolution_parameter_on_all_rwc(param_range, subdivision = subdivision, penalty_func = "sargentdeux")
Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
0.0 10.9400 11.7800 7.8700 0.4876 0.5922 0.5259
0.001 10.8100 10.9800 8.0000 0.5023 0.5841 0.5312
0.002 10.6700 10.6800 8.1400 0.5059 0.5769 0.5305
0.003 10.6000 10.4600 8.2100 0.5094 0.5729 0.5310
0.004 10.5800 10.3000 8.2300 0.5129 0.5712 0.5327
0.005 10.4600 10.0500 8.3500 0.5161 0.5647 0.5321
0.006 10.3100 9.8600 8.5000 0.5173 0.5571 0.5299
0.007 10.2600 9.6600 8.5500 0.5206 0.5540 0.5308
0.008 10.1500 9.6600 8.6600 0.5181 0.5475 0.5268
0.009 10.0600 9.5600 8.7500 0.5185 0.5419 0.5246
0.01 9.9600 9.4500 8.8500 0.5187 0.5372 0.5222
0.011 9.8800 9.3800 8.9300 0.5182 0.5330 0.5201
0.012 9.8000 9.2200 9.0100 0.5199 0.5286 0.5192
0.013 9.7100 9.1100 9.1000 0.5196 0.5245 0.5172
0.014 9.6300 9.0400 9.1800 0.5203 0.5199 0.5155
0.015 9.5900 9.0200 9.2200 0.5196 0.5183 0.5145
0.016 9.5100 8.9600 9.3000 0.5192 0.5145 0.5125
0.017 9.4700 8.9200 9.3400 0.5199 0.5122 0.5117
0.018 9.4600 8.8500 9.3500 0.5214 0.5113 0.5119
0.019 9.4100 8.8400 9.4000 0.5203 0.5087 0.5100

For $\alpha = 2$, the best $\lambda$ seems to be 0.004.

Modulo functions

"Favouring modulo 4"

In [7]:
param_range = [i/10 for i in range(0,20)]
hide.convolution_parameter_on_all_rwc(param_range, subdivision = subdivision, penalty_func = "modulo4")
Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
0.0 10.9400 11.7800 7.8700 0.4876 0.5922 0.5259
0.1 10.8700 10.2700 7.9400 0.5193 0.5877 0.5424
0.2 10.7200 9.2700 8.0900 0.5415 0.5794 0.5510
0.3 10.7600 8.3500 8.0500 0.5682 0.5802 0.5655
0.4 10.6300 7.7700 8.1800 0.5812 0.5737 0.5692
0.5 10.4000 7.6400 8.4100 0.5782 0.5607 0.5618
0.6 10.3800 7.2400 8.4300 0.5897 0.5589 0.5671
0.7 10.2200 7.2000 8.5900 0.5874 0.5499 0.5612
0.8 10.2600 6.9700 8.5500 0.5958 0.5527 0.5665
0.9 10.2700 6.7600 8.5400 0.6029 0.5534 0.5703
1.0 10.1000 6.7300 8.7100 0.5989 0.5455 0.5646
1.1 9.9200 6.7600 8.8900 0.5948 0.5357 0.5579
1.2 9.8500 6.6300 8.9600 0.5963 0.5316 0.5563
1.3 9.8200 6.5400 8.9900 0.6002 0.5310 0.5576
1.4 9.6200 6.6600 9.1900 0.5882 0.5204 0.5466
1.5 9.5700 6.5800 9.2400 0.5893 0.5183 0.5460
1.6 9.5500 6.5500 9.2600 0.5892 0.5170 0.5453
1.7 9.2500 6.7600 9.5600 0.5742 0.5030 0.5309
1.8 9.1500 6.8000 9.6600 0.5698 0.4965 0.5254
1.9 9.1600 6.7900 9.6500 0.5707 0.4970 0.5262

In this function, the best $\lambda$ seems to be 0.9.

"Favouring 8, then modulo 4"

In [8]:
param_range = [i/10 for i in range(0,20)]
hide.convolution_parameter_on_all_rwc(param_range, subdivision = subdivision, penalty_func = "modulo8")
Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
0.0 10.9400 11.7800 7.8700 0.4876 0.5922 0.5259
0.1 10.8100 10.1700 8.0000 0.5207 0.5846 0.5418
0.2 10.6500 9.2300 8.1600 0.5424 0.5757 0.5490
0.3 10.6900 8.3300 8.1200 0.5680 0.5771 0.5635
0.4 10.4400 7.7600 8.3700 0.5774 0.5627 0.5620
0.5 10.3100 7.4400 8.5000 0.5837 0.5540 0.5611
0.6 10.2200 7.0400 8.5900 0.5942 0.5483 0.5634
0.7 10.0600 6.9400 8.7500 0.5925 0.5414 0.5591
0.8 10.0800 6.6800 8.7300 0.6023 0.5428 0.5644
0.9 10.0800 6.3200 8.7300 0.6146 0.5420 0.5698
1.0 10.1100 6.0400 8.7000 0.6266 0.5450 0.5767
1.1 9.9900 5.9800 8.8200 0.6252 0.5392 0.5728
1.2 9.8100 5.8800 9.0000 0.6242 0.5301 0.5677
1.3 9.7200 5.8800 9.0900 0.6213 0.5242 0.5631
1.4 9.6100 5.7800 9.2000 0.6202 0.5188 0.5591
1.5 9.3400 5.8500 9.4700 0.6118 0.5050 0.5474
1.6 9.2500 5.7000 9.5600 0.6148 0.4999 0.5459
1.7 9.0900 5.7800 9.7200 0.6058 0.4914 0.5372
1.8 8.9000 5.8800 9.9100 0.5974 0.4813 0.5277
1.9 8.6200 6.0600 10.1900 0.5851 0.4680 0.5145

In this function, the best $\lambda$ seems to be 1.

"Favouring little segments of 8, then 4"

In [9]:
param_range = [i/10 for i in range(0,20)]
hide.convolution_parameter_on_all_rwc(param_range, subdivision = subdivision, penalty_func = "moduloSmall8and4")
Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
0.0 10.9400 11.7800 7.8700 0.4876 0.5922 0.5259
0.1 11.0100 12.8000 7.8000 0.4679 0.5944 0.5176
0.2 10.9100 11.8400 7.9000 0.4875 0.5891 0.5268
0.3 10.8000 10.9600 8.0100 0.5032 0.5827 0.5336
0.4 10.6200 10.5600 8.1900 0.5081 0.5723 0.5327
0.5 10.5300 10.1700 8.2800 0.5138 0.5653 0.5331
0.6 10.4900 9.8100 8.3200 0.5218 0.5626 0.5363
0.7 10.4800 9.4700 8.3300 0.5300 0.5623 0.5408
0.8 10.5100 9.1800 8.3000 0.5383 0.5637 0.5459
0.9 10.5000 8.8900 8.3100 0.5455 0.5626 0.5493
1.0 10.5400 8.6100 8.2700 0.5547 0.5643 0.5553
1.1 10.4600 8.5100 8.3500 0.5549 0.5612 0.5541
1.2 10.2400 8.6300 8.5700 0.5457 0.5492 0.5437
1.3 10.1900 8.6300 8.6200 0.5434 0.5473 0.5416
1.4 10.0700 8.6900 8.7400 0.5399 0.5421 0.5374
1.5 9.9500 8.7100 8.8600 0.5367 0.5365 0.5330
1.6 9.7100 8.8000 9.1000 0.5280 0.5231 0.5220
1.7 9.6000 8.7800 9.2100 0.5258 0.5171 0.5177
1.8 9.4100 8.9100 9.4000 0.5180 0.5079 0.5094
1.9 9.3900 8.9200 9.4200 0.5170 0.5069 0.5083

In this function, the best $\lambda$ seems to be 1.

Results with different ranks, $\lambda$ fixed

Now, we will fix $\lambda$ to the previous optimal value, and try different ranks for the decomposition.

For both $H$ and $Q$, we will try ranks in the range [12,16,20,24,28,32,36].

In [10]:
ranks_rhythm = [12,16,20,24,28,32,36]
ranks_pattern = [12,16,20,24,28,32,36]

Note: I conceed that tables are a bit long, you can jump directly to the conclusion to see what we considered to be the best outputs, and check if it's coherent in the tables afterwards.

Symmetric functions centered on 8

$\alpha = 1/2$

In [11]:
zero_five_chr, three_chr = hide.compute_ranks_RWC(ranks_rhythm,ranks_pattern,subdivision=subdivision, 
                                                  penalty_weight = 0.4, penalty_func = "sargentdemi")
Résultats à 0.5 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 7.8800 5.7800 10.9300 0.5773 0.4246 0.4825
Rang H:16 7.8200 6.0000 10.9900 0.5634 0.4228 0.4766
Rang H:20 8.0400 5.9000 10.7700 0.5755 0.4338 0.4886
Rang H:24 8.1600 5.8700 10.6500 0.5798 0.4384 0.4922
Rang H:28 8.2900 5.9900 10.5200 0.5837 0.4467 0.4991
Rang H:32 7.9700 5.9300 10.8400 0.5715 0.4291 0.4837
Rang H:36 8.2100 5.9900 10.6000 0.5766 0.4420 0.4938
Rang Q:16 Rang H:12 8.4100 5.9400 10.4000 0.5813 0.4531 0.5032
Rang H:16 8.7000 5.8500 10.1100 0.5969 0.4688 0.5193
Rang H:20 8.9600 5.7100 9.8500 0.6046 0.4825 0.5313
Rang H:24 8.7900 5.8400 10.0200 0.5992 0.4743 0.5234
Rang H:28 8.7500 5.8900 10.0600 0.5940 0.4696 0.5192
Rang H:32 8.8200 5.6400 9.9900 0.6047 0.4750 0.5268
Rang H:36 8.8700 5.9000 9.9400 0.5977 0.4760 0.5242
Rang Q:20 Rang H:12 8.9800 5.6000 9.8300 0.6159 0.4829 0.5354
Rang H:16 9.0300 5.9800 9.7800 0.5980 0.4861 0.5302
Rang H:20 9.0700 6.0000 9.7400 0.5995 0.4893 0.5336
Rang H:24 9.1800 5.8600 9.6300 0.6077 0.4947 0.5393
Rang H:28 9.1500 5.8900 9.6600 0.6063 0.4927 0.5373
Rang H:32 9.1700 5.9000 9.6400 0.6078 0.4935 0.5384
Rang H:36 9.1000 6.0200 9.7100 0.6025 0.4906 0.5349
Rang Q:24 Rang H:12 8.9100 6.0500 9.9000 0.5928 0.4813 0.5254
Rang H:16 9.3000 5.9200 9.5100 0.6115 0.5025 0.5459
Rang H:20 9.3400 6.0000 9.4700 0.6108 0.5045 0.5475
Rang H:24 9.5000 6.0000 9.3100 0.6127 0.5135 0.5530
Rang H:28 9.2800 6.0800 9.5300 0.6031 0.4994 0.5410
Rang H:32 9.2900 5.9700 9.5200 0.6088 0.4999 0.5441
Rang H:36 9.4000 6.0200 9.4100 0.6056 0.5060 0.5464
Rang Q:28 Rang H:12 9.1900 5.7500 9.6200 0.6141 0.4971 0.5440
Rang H:16 9.1500 6.2500 9.6600 0.5900 0.4913 0.5310
Rang H:20 9.3400 6.1100 9.4700 0.6018 0.5015 0.5421
Rang H:24 9.4300 6.0400 9.3800 0.6066 0.5062 0.5466
Rang H:28 9.5300 5.9500 9.2800 0.6135 0.5125 0.5534
Rang H:32 9.3900 5.9000 9.4200 0.6129 0.5050 0.5484
Rang H:36 9.6200 5.9300 9.1900 0.6169 0.5175 0.5578
Rang Q:32 Rang H:12 9.4000 5.7200 9.4100 0.6226 0.5063 0.5532
Rang H:16 9.5000 5.8700 9.3100 0.6190 0.5123 0.5548
Rang H:20 9.5200 6.0900 9.2900 0.6085 0.5107 0.5495
Rang H:24 9.5600 6.1900 9.2500 0.6059 0.5140 0.5508
Rang H:28 9.5900 6.1600 9.2200 0.6084 0.5151 0.5518
Rang H:32 9.4600 6.1300 9.3500 0.6069 0.5115 0.5502
Rang H:36 9.3400 6.3000 9.4700 0.5966 0.5028 0.5408
Rang Q:36 Rang H:12 9.1900 6.2600 9.6200 0.5944 0.4931 0.5338
Rang H:16 9.2000 6.3300 9.6100 0.5909 0.4934 0.5325
Rang H:20 9.3500 6.3600 9.4600 0.5948 0.5011 0.5392
Rang H:24 9.4000 6.3600 9.4100 0.5963 0.5060 0.5425
Rang H:28 9.3300 6.7600 9.4800 0.5808 0.5015 0.5334
Rang H:32 9.3600 6.6700 9.4500 0.5815 0.5007 0.5333
Rang H:36 9.3300 6.6200 9.4800 0.5845 0.5010 0.5354
Résultats à 3 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 10.0500 3.6100 8.7600 0.7384 0.5412 0.6161
Rang H:16 10.3800 3.4400 8.4300 0.7510 0.5595 0.6327
Rang H:20 10.5600 3.3800 8.2500 0.7608 0.5687 0.6428
Rang H:24 10.5500 3.4800 8.2600 0.7548 0.5675 0.6388
Rang H:28 10.7200 3.5600 8.0900 0.7574 0.5781 0.6469
Rang H:32 10.1400 3.7600 8.6700 0.7288 0.5451 0.6156
Rang H:36 10.6600 3.5400 8.1500 0.7522 0.5727 0.6418
Rang Q:16 Rang H:12 10.6600 3.6900 8.1500 0.7426 0.5733 0.6392
Rang H:16 11.1500 3.4000 7.6600 0.7678 0.5996 0.6656
Rang H:20 11.4500 3.2200 7.3600 0.7798 0.6172 0.6816
Rang H:24 11.2700 3.3600 7.5400 0.7738 0.6067 0.6720
Rang H:28 11.2800 3.3600 7.5300 0.7705 0.6064 0.6715
Rang H:32 11.1400 3.3200 7.6700 0.7663 0.5984 0.6651
Rang H:36 11.4300 3.3400 7.3800 0.7755 0.6129 0.6772
Rang Q:20 Rang H:12 11.1600 3.4200 7.6500 0.7671 0.5998 0.6655
Rang H:16 11.6000 3.4100 7.2100 0.7728 0.6246 0.6827
Rang H:20 11.6500 3.4200 7.1600 0.7753 0.6266 0.6861
Rang H:24 11.5900 3.4500 7.2200 0.7735 0.6229 0.6820
Rang H:28 11.7300 3.3100 7.0800 0.7822 0.6335 0.6916
Rang H:32 11.3500 3.7200 7.4600 0.7546 0.6105 0.6670
Rang H:36 11.5500 3.5700 7.2600 0.7679 0.6221 0.6795
Rang Q:24 Rang H:12 11.1900 3.7700 7.6200 0.7488 0.6028 0.6603
Rang H:16 11.8000 3.4200 7.0100 0.7805 0.6374 0.6940
Rang H:20 11.7200 3.6200 7.0900 0.7673 0.6315 0.6861
Rang H:24 12.0200 3.4800 6.7900 0.7786 0.6477 0.6995
Rang H:28 11.8300 3.5300 6.9800 0.7715 0.6366 0.6904
Rang H:32 11.6800 3.5800 7.1300 0.7674 0.6282 0.6843
Rang H:36 11.9300 3.4900 6.8800 0.7752 0.6422 0.6959
Rang Q:28 Rang H:12 11.4200 3.5200 7.3900 0.7658 0.6151 0.6753
Rang H:16 11.7900 3.6100 7.0200 0.7668 0.6342 0.6870
Rang H:20 11.9000 3.5500 6.9100 0.7727 0.6394 0.6927
Rang H:24 12.0000 3.4700 6.8100 0.7742 0.6444 0.6962
Rang H:28 12.0200 3.4600 6.7900 0.7748 0.6457 0.6973
Rang H:32 11.7000 3.5900 7.1100 0.7653 0.6287 0.6831
Rang H:36 12.0700 3.4800 6.7400 0.7762 0.6485 0.7000
Rang Q:32 Rang H:12 11.5700 3.5500 7.2400 0.7635 0.6223 0.6787
Rang H:16 11.8700 3.5000 6.9400 0.7759 0.6390 0.6931
Rang H:20 11.7100 3.9000 7.1000 0.7512 0.6281 0.6766
Rang H:24 12.0100 3.7400 6.8000 0.7642 0.6457 0.6929
Rang H:28 11.9500 3.8000 6.8600 0.7611 0.6413 0.6881
Rang H:32 12.0300 3.5600 6.7800 0.7752 0.6476 0.6990
Rang H:36 11.9900 3.6500 6.8200 0.7680 0.6441 0.6940
Rang Q:36 Rang H:12 11.7800 3.6700 7.0300 0.7617 0.6321 0.6836
Rang H:16 11.9700 3.5600 6.8400 0.7702 0.6423 0.6930
Rang H:20 12.0200 3.6900 6.7900 0.7653 0.6438 0.6929
Rang H:24 12.1500 3.6100 6.6600 0.7705 0.6521 0.6996
Rang H:28 12.2400 3.8500 6.5700 0.7627 0.6556 0.6984
Rang H:32 12.2400 3.7900 6.5700 0.7640 0.6550 0.6985
Rang H:36 12.2400 3.7100 6.5700 0.7663 0.6551 0.7004

$\alpha = 1$

In [12]:
zero_five_chr, three_chr = hide.compute_ranks_RWC(ranks_rhythm,ranks_pattern,subdivision=subdivision, 
                                                  penalty_weight = 0.09, penalty_func = "sargentun")
Résultats à 0.5 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 7.9600 7.0900 10.8500 0.5374 0.4299 0.4705
Rang H:16 7.9400 7.4400 10.8700 0.5234 0.4286 0.4643
Rang H:20 8.0500 7.3700 10.7600 0.5309 0.4345 0.4711
Rang H:24 8.2700 7.1600 10.5400 0.5419 0.4447 0.4817
Rang H:28 8.1200 7.4100 10.6900 0.5324 0.4366 0.4733
Rang H:32 7.9600 7.4200 10.8500 0.5251 0.4281 0.4644
Rang H:36 8.1700 7.5500 10.6400 0.5283 0.4392 0.4733
Rang Q:16 Rang H:12 8.5400 7.2800 10.2700 0.5480 0.4608 0.4933
Rang H:16 8.6400 7.2700 10.1700 0.5506 0.4650 0.4970
Rang H:20 8.8900 7.2400 9.9200 0.5556 0.4799 0.5086
Rang H:24 8.8500 7.2900 9.9600 0.5552 0.4774 0.5071
Rang H:28 8.8000 7.3600 10.0100 0.5529 0.4752 0.5038
Rang H:32 8.8600 7.0700 9.9500 0.5624 0.4793 0.5115
Rang H:36 8.8500 7.2400 9.9600 0.5572 0.4753 0.5066
Rang Q:20 Rang H:12 9.0200 7.1900 9.7900 0.5669 0.4867 0.5171
Rang H:16 9.0400 7.4200 9.7700 0.5578 0.4883 0.5140
Rang H:20 9.1300 7.3900 9.6800 0.5595 0.4913 0.5169
Rang H:24 9.2800 7.4000 9.5300 0.5645 0.5004 0.5238
Rang H:28 9.1500 7.3300 9.6600 0.5639 0.4948 0.5201
Rang H:32 9.0900 7.4600 9.7200 0.5583 0.4904 0.5152
Rang H:36 9.1100 7.4400 9.7000 0.5593 0.4941 0.5177
Rang Q:24 Rang H:12 9.1600 7.2500 9.6500 0.5679 0.4947 0.5214
Rang H:16 9.1200 7.3300 9.6900 0.5632 0.4930 0.5196
Rang H:20 9.3300 7.5700 9.4800 0.5614 0.5037 0.5249
Rang H:24 9.5900 7.4300 9.2200 0.5716 0.5185 0.5371
Rang H:28 9.5900 7.4200 9.2200 0.5695 0.5185 0.5365
Rang H:32 9.6000 7.2600 9.2100 0.5776 0.5175 0.5404
Rang H:36 9.4700 7.5600 9.3400 0.5621 0.5087 0.5282
Rang Q:28 Rang H:12 9.2400 7.5300 9.5700 0.5580 0.5004 0.5207
Rang H:16 9.2800 7.9800 9.5300 0.5462 0.4994 0.5159
Rang H:20 9.3800 7.9600 9.4300 0.5481 0.5053 0.5198
Rang H:24 9.4200 7.7600 9.3900 0.5552 0.5064 0.5239
Rang H:28 9.5700 7.6000 9.2400 0.5617 0.5149 0.5315
Rang H:32 9.4900 7.7400 9.3200 0.5533 0.5104 0.5257
Rang H:36 9.5400 7.5700 9.2700 0.5631 0.5150 0.5322
Rang Q:32 Rang H:12 9.4800 7.5800 9.3300 0.5634 0.5124 0.5302
Rang H:16 9.7400 7.3800 9.0700 0.5779 0.5228 0.5428
Rang H:20 9.7800 7.5800 9.0300 0.5720 0.5247 0.5409
Rang H:24 9.6900 7.8600 9.1200 0.5573 0.5215 0.5331
Rang H:28 9.9500 7.6300 8.8600 0.5732 0.5349 0.5470
Rang H:32 9.7700 7.6700 9.0400 0.5647 0.5266 0.5394
Rang H:36 9.6700 7.9300 9.1400 0.5565 0.5217 0.5324
Rang Q:36 Rang H:12 9.4500 7.6300 9.3600 0.5605 0.5083 0.5278
Rang H:16 9.5000 7.8100 9.3100 0.5543 0.5092 0.5253
Rang H:20 9.6500 7.9500 9.1600 0.5569 0.5194 0.5317
Rang H:24 9.7400 8.1000 9.0700 0.5530 0.5242 0.5325
Rang H:28 9.6300 8.1900 9.1800 0.5477 0.5182 0.5266
Rang H:32 9.6900 8.4300 9.1200 0.5392 0.5206 0.5243
Rang H:36 9.6200 8.4900 9.1900 0.5376 0.5181 0.5222
Résultats à 3 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 10.6100 4.4400 8.2000 0.7192 0.5704 0.6270
Rang H:16 10.7900 4.5900 8.0200 0.7147 0.5803 0.6316
Rang H:20 10.9700 4.4500 7.8400 0.7276 0.5911 0.6433
Rang H:24 11.0900 4.3400 7.7200 0.7336 0.5957 0.6486
Rang H:28 11.0900 4.4400 7.7200 0.7321 0.5959 0.6486
Rang H:32 10.6600 4.7200 8.1500 0.7067 0.5721 0.6231
Rang H:36 11.1100 4.6100 7.7000 0.7224 0.5965 0.6448
Rang Q:16 Rang H:12 11.0900 4.7300 7.7200 0.7149 0.5982 0.6418
Rang H:16 11.4800 4.4300 7.3300 0.7364 0.6183 0.6628
Rang H:20 11.8000 4.3300 7.0100 0.7438 0.6362 0.6768
Rang H:24 11.8400 4.3000 6.9700 0.7448 0.6376 0.6784
Rang H:28 11.6500 4.5100 7.1600 0.7364 0.6282 0.6682
Rang H:32 11.4500 4.4800 7.3600 0.7290 0.6165 0.6603
Rang H:36 11.6700 4.4200 7.1400 0.7379 0.6266 0.6691
Rang Q:20 Rang H:12 11.6100 4.6000 7.2000 0.7321 0.6257 0.6661
Rang H:16 11.9400 4.5200 6.8700 0.7394 0.6440 0.6795
Rang H:20 12.0200 4.5000 6.7900 0.7396 0.6461 0.6813
Rang H:24 12.0400 4.6400 6.7700 0.7357 0.6473 0.6799
Rang H:28 12.1300 4.3500 6.6800 0.7514 0.6550 0.6907
Rang H:32 11.7200 4.8300 7.0900 0.7194 0.6304 0.6631
Rang H:36 11.9600 4.5900 6.8500 0.7369 0.6447 0.6788
Rang Q:24 Rang H:12 11.7300 4.6800 7.0800 0.7316 0.6324 0.6690
Rang H:16 12.0100 4.4400 6.8000 0.7446 0.6474 0.6845
Rang H:20 12.2000 4.7000 6.6100 0.7340 0.6548 0.6843
Rang H:24 12.4400 4.5800 6.3700 0.7441 0.6678 0.6952
Rang H:28 12.3500 4.6600 6.4600 0.7359 0.6639 0.6901
Rang H:32 12.1800 4.6800 6.6300 0.7331 0.6554 0.6850
Rang H:36 12.3000 4.7300 6.5100 0.7346 0.6598 0.6874
Rang Q:28 Rang H:12 12.0400 4.7300 6.7700 0.7282 0.6492 0.6776
Rang H:16 12.3000 4.9600 6.5100 0.7266 0.6614 0.6845
Rang H:20 12.5800 4.7600 6.2300 0.7363 0.6738 0.6957
Rang H:24 12.4000 4.7800 6.4100 0.7315 0.6658 0.6892
Rang H:28 12.4500 4.7200 6.3600 0.7348 0.6670 0.6914
Rang H:32 12.3100 4.9200 6.5000 0.7223 0.6614 0.6832
Rang H:36 12.5600 4.5500 6.2500 0.7420 0.6750 0.6989
Rang Q:32 Rang H:12 12.1400 4.9200 6.6700 0.7218 0.6528 0.6768
Rang H:16 12.3900 4.7300 6.4200 0.7352 0.6654 0.6903
Rang H:20 12.3900 4.9700 6.4200 0.7246 0.6648 0.6855
Rang H:24 12.4900 5.0600 6.3200 0.7208 0.6706 0.6872
Rang H:28 12.5300 5.0500 6.2800 0.7232 0.6727 0.6888
Rang H:32 12.7000 4.7400 6.1100 0.7356 0.6820 0.7004
Rang H:36 12.7100 4.8900 6.1000 0.7331 0.6822 0.6986
Rang Q:36 Rang H:12 12.3000 4.7800 6.5100 0.7286 0.6605 0.6857
Rang H:16 12.6000 4.7100 6.2100 0.7352 0.6748 0.6961
Rang H:20 12.7100 4.8900 6.1000 0.7334 0.6804 0.6980
Rang H:24 12.6700 5.1700 6.1400 0.7207 0.6792 0.6917
Rang H:28 12.7600 5.0600 6.0500 0.7245 0.6833 0.6953
Rang H:32 12.9800 5.1400 5.8300 0.7246 0.6944 0.7016
Rang H:36 12.8500 5.2600 5.9600 0.7199 0.6886 0.6964

$\alpha = 2$

In [13]:
zero_five_chr, three_chr = hide.compute_ranks_RWC(ranks_rhythm,ranks_pattern,subdivision=subdivision, 
                                                  penalty_weight = 0.004, penalty_func = "sargentdeux")
Résultats à 0.5 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 8.2500 8.6300 10.5600 0.5001 0.4460 0.4629
Rang H:16 8.3800 8.8500 10.4300 0.4963 0.4532 0.4652
Rang H:20 8.4400 8.5200 10.3700 0.5102 0.4569 0.4732
Rang H:24 8.4500 8.6000 10.3600 0.5100 0.4563 0.4732
Rang H:28 8.4700 8.7900 10.3400 0.5041 0.4564 0.4702
Rang H:32 8.4500 8.8100 10.3600 0.5010 0.4549 0.4680
Rang H:36 8.6100 8.7100 10.2000 0.5108 0.4652 0.4786
Rang Q:16 Rang H:12 8.8400 9.0600 9.9700 0.5026 0.4766 0.4800
Rang H:16 9.0500 9.0900 9.7600 0.5113 0.4883 0.4911
Rang H:20 9.3900 9.1200 9.4200 0.5178 0.5061 0.5035
Rang H:24 9.2500 9.1500 9.5600 0.5129 0.5005 0.4984
Rang H:28 9.2100 9.1400 9.6000 0.5155 0.4976 0.4973
Rang H:32 9.2000 9.2500 9.6100 0.5087 0.4957 0.4940
Rang H:36 9.2000 9.0700 9.6100 0.5140 0.4950 0.4967
Rang Q:20 Rang H:12 9.5100 9.1200 9.3000 0.5222 0.5129 0.5085
Rang H:16 9.6000 9.2900 9.2100 0.5163 0.5166 0.5081
Rang H:20 9.4900 9.5000 9.3200 0.5106 0.5121 0.5030
Rang H:24 9.6500 9.2500 9.1600 0.5193 0.5204 0.5109
Rang H:28 9.7300 9.3700 9.0800 0.5201 0.5252 0.5138
Rang H:32 9.8400 9.4400 8.9700 0.5203 0.5304 0.5175
Rang H:36 9.7100 9.2000 9.1000 0.5204 0.5264 0.5154
Rang Q:24 Rang H:12 9.6800 9.4000 9.1300 0.5154 0.5233 0.5109
Rang H:16 9.8100 9.4300 9.0000 0.5215 0.5304 0.5172
Rang H:20 10.1400 9.8300 8.6700 0.5189 0.5486 0.5244
Rang H:24 10.0400 9.8400 8.7700 0.5160 0.5441 0.5214
Rang H:28 10.2200 9.8200 8.5900 0.5200 0.5529 0.5273
Rang H:32 10.1200 10.0800 8.6900 0.5108 0.5453 0.5197
Rang H:36 10.0400 10.0900 8.7700 0.5067 0.5421 0.5158
Rang Q:28 Rang H:12 9.9100 9.6000 8.9000 0.5177 0.5368 0.5178
Rang H:16 10.0200 10.2900 8.7900 0.5018 0.5398 0.5118
Rang H:20 10.0300 10.0400 8.7800 0.5065 0.5405 0.5151
Rang H:24 10.1100 10.0500 8.7000 0.5094 0.5448 0.5191
Rang H:28 10.3100 9.8800 8.5000 0.5196 0.5538 0.5281
Rang H:32 10.4400 10.1300 8.3700 0.5123 0.5639 0.5299
Rang H:36 10.3700 10.1400 8.4400 0.5151 0.5605 0.5283
Rang Q:32 Rang H:12 10.1100 9.6000 8.7000 0.5230 0.5474 0.5264
Rang H:16 10.3700 9.9200 8.4400 0.5177 0.5571 0.5296
Rang H:20 10.6400 9.9200 8.1700 0.5247 0.5728 0.5402
Rang H:24 10.6900 10.4700 8.1200 0.5120 0.5744 0.5335
Rang H:28 10.5600 10.3800 8.2500 0.5104 0.5680 0.5305
Rang H:32 10.5800 10.3000 8.2300 0.5129 0.5712 0.5327
Rang H:36 10.5300 10.5800 8.2800 0.5078 0.5692 0.5281
Rang Q:36 Rang H:12 10.1100 10.1600 8.7000 0.5062 0.5442 0.5176
Rang H:16 10.4100 10.2600 8.4000 0.5104 0.5594 0.5269
Rang H:20 10.5100 10.4400 8.3000 0.5093 0.5652 0.5287
Rang H:24 10.4400 10.4800 8.3700 0.5035 0.5623 0.5249
Rang H:28 10.4400 10.6200 8.3700 0.5006 0.5613 0.5227
Rang H:32 10.5200 11.0100 8.2900 0.4957 0.5647 0.5215
Rang H:36 10.3900 10.8900 8.4200 0.4942 0.5601 0.5189
Résultats à 3 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 11.1500 5.7300 7.6600 0.6786 0.5998 0.6254
Rang H:16 11.4100 5.8200 7.4000 0.6819 0.6149 0.6355
Rang H:20 11.4200 5.5400 7.3900 0.6949 0.6161 0.6413
Rang H:24 11.5900 5.4600 7.2200 0.7018 0.6237 0.6491
Rang H:28 11.5100 5.7500 7.3000 0.6891 0.6200 0.6409
Rang H:32 11.3300 5.9300 7.4800 0.6770 0.6094 0.6296
Rang H:36 11.5900 5.7300 7.2200 0.6894 0.6234 0.6437
Rang Q:16 Rang H:12 11.4800 6.4200 7.3300 0.6600 0.6193 0.6270
Rang H:16 11.9000 6.2400 6.9100 0.6766 0.6418 0.6476
Rang H:20 12.3200 6.1900 6.4900 0.6864 0.6642 0.6638
Rang H:24 12.3000 6.1000 6.5100 0.6866 0.6630 0.6637
Rang H:28 12.1500 6.2000 6.6600 0.6839 0.6558 0.6577
Rang H:32 12.0900 6.3600 6.7200 0.6698 0.6500 0.6492
Rang H:36 12.2000 6.0700 6.6100 0.6875 0.6555 0.6607
Rang Q:20 Rang H:12 12.1800 6.4500 6.6300 0.6730 0.6571 0.6536
Rang H:16 12.4900 6.4000 6.3200 0.6770 0.6713 0.6634
Rang H:20 12.3900 6.6000 6.4200 0.6693 0.6655 0.6564
Rang H:24 12.3900 6.5100 6.4200 0.6731 0.6673 0.6586
Rang H:28 12.6600 6.4400 6.1500 0.6835 0.6825 0.6715
Rang H:32 12.4600 6.8200 6.3500 0.6631 0.6706 0.6566
Rang H:36 12.4900 6.4200 6.3200 0.6732 0.6721 0.6623
Rang Q:24 Rang H:12 12.3800 6.7000 6.4300 0.6649 0.6679 0.6553
Rang H:16 12.7000 6.5400 6.1100 0.6797 0.6843 0.6709
Rang H:20 12.8700 7.1000 5.9400 0.6619 0.6925 0.6655
Rang H:24 12.9900 6.8900 5.8200 0.6702 0.6999 0.6735
Rang H:28 12.9300 7.1100 5.8800 0.6630 0.6964 0.6678
Rang H:32 12.8700 7.3300 5.9400 0.6538 0.6928 0.6624
Rang H:36 12.9500 7.1800 5.8600 0.6610 0.6961 0.6673
Rang Q:28 Rang H:12 12.6500 6.8600 6.1600 0.6657 0.6823 0.6622
Rang H:16 12.8700 7.4400 5.9400 0.6511 0.6913 0.6595
Rang H:20 13.0300 7.0400 5.7800 0.6633 0.6981 0.6701
Rang H:24 13.0200 7.1400 5.7900 0.6607 0.7000 0.6700
Rang H:28 13.0900 7.1000 5.7200 0.6649 0.7013 0.6722
Rang H:32 13.0400 7.5300 5.7700 0.6457 0.7018 0.6636
Rang H:36 13.1600 7.3500 5.6500 0.6586 0.7083 0.6717
Rang Q:32 Rang H:12 12.6000 7.1100 6.2100 0.6531 0.6787 0.6547
Rang H:16 12.9500 7.3400 5.8600 0.6517 0.6963 0.6639
Rang H:20 13.0700 7.4900 5.7400 0.6484 0.7014 0.6643
Rang H:24 13.3000 7.8600 5.5100 0.6442 0.7138 0.6666
Rang H:28 13.1600 7.7800 5.6500 0.6405 0.7066 0.6628
Rang H:32 13.2400 7.6400 5.5700 0.6463 0.7111 0.6670
Rang H:36 13.4000 7.7100 5.4100 0.6509 0.7200 0.6726
Rang Q:36 Rang H:12 12.9900 7.2800 5.8200 0.6538 0.6986 0.6662
Rang H:16 13.2600 7.4100 5.5500 0.6525 0.7107 0.6715
Rang H:20 13.4800 7.4700 5.3300 0.6571 0.7217 0.6783
Rang H:24 13.2400 7.6800 5.5700 0.6432 0.7108 0.6669
Rang H:28 13.5500 7.5100 5.2600 0.6535 0.7259 0.6793
Rang H:32 13.5400 7.9900 5.2700 0.6411 0.7253 0.6720
Rang H:36 13.4900 7.7900 5.3200 0.6444 0.7239 0.6735

Modulo functions

"Favouring modulo 4"

In [14]:
zero_five_chr, three_chr = hide.compute_ranks_RWC(ranks_rhythm,ranks_pattern, subdivision=subdivision,
                                                  penalty_weight = 0.9, penalty_func = "modulo4")
Résultats à 0.5 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 7.6300 5.6300 11.1800 0.5737 0.4152 0.4722
Rang H:16 7.7300 6.0600 11.0800 0.5622 0.4207 0.4726
Rang H:20 7.8200 5.8400 10.9900 0.5759 0.4242 0.4800
Rang H:24 7.8900 6.0100 10.9200 0.5713 0.4277 0.4806
Rang H:28 8.0200 5.8100 10.7900 0.5804 0.4344 0.4885
Rang H:32 7.8800 5.8200 10.9300 0.5720 0.4263 0.4789
Rang H:36 7.9700 5.7700 10.8400 0.5801 0.4313 0.4866
Rang Q:16 Rang H:12 8.3500 6.0800 10.4600 0.5783 0.4546 0.4990
Rang H:16 8.6400 6.2000 10.1700 0.5852 0.4664 0.5103
Rang H:20 8.9200 6.1500 9.8900 0.5903 0.4811 0.5209
Rang H:24 9.0400 5.9100 9.7700 0.6052 0.4890 0.5331
Rang H:28 8.8000 6.1600 10.0100 0.5900 0.4768 0.5187
Rang H:32 8.8500 6.1300 9.9600 0.5923 0.4788 0.5211
Rang H:36 9.0100 6.2000 9.8000 0.5911 0.4855 0.5257
Rang Q:20 Rang H:12 9.2300 5.7200 9.5800 0.6237 0.4973 0.5442
Rang H:16 9.1300 6.2600 9.6800 0.5913 0.4928 0.5293
Rang H:20 9.5200 6.3300 9.2900 0.6037 0.5116 0.5452
Rang H:24 9.3100 6.4400 9.5000 0.5897 0.5020 0.5346
Rang H:28 9.4700 6.2100 9.3400 0.6056 0.5114 0.5455
Rang H:32 9.3500 6.0900 9.4600 0.6107 0.5043 0.5427
Rang H:36 9.5200 6.2800 9.2900 0.6034 0.5141 0.5473
Rang Q:24 Rang H:12 9.5200 6.0400 9.2900 0.6152 0.5141 0.5516
Rang H:16 9.3900 6.3300 9.4200 0.6034 0.5080 0.5433
Rang H:20 9.5500 6.5000 9.2600 0.5953 0.5177 0.5465
Rang H:24 9.6700 6.6500 9.1400 0.5957 0.5203 0.5473
Rang H:28 10.0400 6.5100 8.7700 0.6080 0.5409 0.5649
Rang H:32 9.8200 6.5000 8.9900 0.6047 0.5310 0.5586
Rang H:36 9.8700 6.5500 8.9400 0.6036 0.5304 0.5574
Rang Q:28 Rang H:12 9.5500 6.1900 9.2600 0.6078 0.5167 0.5491
Rang H:16 9.6700 6.8800 9.1400 0.5852 0.5190 0.5428
Rang H:20 9.7300 6.7200 9.0800 0.5904 0.5229 0.5475
Rang H:24 9.8100 6.8000 9.0000 0.5916 0.5278 0.5510
Rang H:28 10.1200 6.6800 8.6900 0.6035 0.5440 0.5648
Rang H:32 9.8700 6.6900 8.9400 0.5975 0.5305 0.5555
Rang H:36 10.2100 6.6800 8.6000 0.6090 0.5501 0.5698
Rang Q:32 Rang H:12 9.7000 6.5300 9.1100 0.6019 0.5234 0.5507
Rang H:16 10.0700 6.6200 8.7400 0.6070 0.5404 0.5643
Rang H:20 10.1800 6.6600 8.6300 0.6037 0.5467 0.5661
Rang H:24 10.2700 6.9000 8.5400 0.5986 0.5498 0.5661
Rang H:28 10.0200 6.9500 8.7900 0.5919 0.5372 0.5554
Rang H:32 10.2700 6.7600 8.5400 0.6029 0.5534 0.5703
Rang H:36 10.2300 6.9200 8.5800 0.5976 0.5503 0.5643
Rang Q:36 Rang H:12 9.7000 6.6800 9.1100 0.5913 0.5223 0.5473
Rang H:16 9.9800 6.8000 8.8300 0.5928 0.5375 0.5563
Rang H:20 10.0600 7.2300 8.7500 0.5824 0.5416 0.5544
Rang H:24 10.2900 6.8200 8.5200 0.6013 0.5506 0.5675
Rang H:28 9.8600 7.0800 8.9500 0.5829 0.5293 0.5474
Rang H:32 10.1000 7.3100 8.7100 0.5806 0.5425 0.5543
Rang H:36 10.2100 7.2700 8.6000 0.5869 0.5493 0.5595
Résultats à 3 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 9.6100 3.6500 9.2000 0.7346 0.5193 0.5961
Rang H:16 10.0900 3.7000 8.7200 0.7463 0.5456 0.6191
Rang H:20 10.0800 3.5800 8.7300 0.7539 0.5459 0.6221
Rang H:24 10.1900 3.7100 8.6200 0.7499 0.5503 0.6237
Rang H:28 10.2900 3.5400 8.5200 0.7569 0.5558 0.6304
Rang H:32 9.9000 3.8000 8.9100 0.7349 0.5350 0.6069
Rang H:36 10.2100 3.5300 8.6000 0.7568 0.5518 0.6279
Rang Q:16 Rang H:12 10.4900 3.9400 8.3200 0.7406 0.5675 0.6293
Rang H:16 10.9800 3.8600 7.8300 0.7535 0.5910 0.6512
Rang H:20 11.1800 3.8900 7.6300 0.7583 0.6025 0.6595
Rang H:24 11.1600 3.7900 7.6500 0.7595 0.6023 0.6618
Rang H:28 11.0500 3.9100 7.7600 0.7519 0.5963 0.6539
Rang H:32 10.9100 4.0700 7.9000 0.7370 0.5875 0.6428
Rang H:36 11.2400 3.9700 7.5700 0.7502 0.6045 0.6599
Rang Q:20 Rang H:12 10.9600 3.9900 7.8500 0.7466 0.5901 0.6481
Rang H:16 11.3800 4.0100 7.4300 0.7519 0.6129 0.6645
Rang H:20 11.6100 4.2400 7.2000 0.7461 0.6237 0.6686
Rang H:24 11.4900 4.2600 7.3200 0.7414 0.6190 0.6647
Rang H:28 11.6400 4.0400 7.1700 0.7563 0.6285 0.6753
Rang H:32 11.2100 4.2300 7.6000 0.7391 0.6016 0.6517
Rang H:36 11.6600 4.1400 7.1500 0.7503 0.6279 0.6736
Rang Q:24 Rang H:12 11.2200 4.3400 7.5900 0.7298 0.6040 0.6505
Rang H:16 11.5300 4.1900 7.2800 0.7479 0.6219 0.6688
Rang H:20 11.7800 4.2700 7.0300 0.7435 0.6343 0.6751
Rang H:24 11.8300 4.4900 6.9800 0.7376 0.6353 0.6721
Rang H:28 12.0500 4.5000 6.7600 0.7370 0.6498 0.6814
Rang H:32 11.8000 4.5200 7.0100 0.7308 0.6356 0.6713
Rang H:36 11.8300 4.5900 6.9800 0.7326 0.6363 0.6719
Rang Q:28 Rang H:12 11.3400 4.4000 7.4700 0.7283 0.6124 0.6538
Rang H:16 11.9500 4.6000 6.8600 0.7339 0.6422 0.6749
Rang H:20 12.0300 4.4200 6.7800 0.7405 0.6469 0.6812
Rang H:24 12.1900 4.4200 6.6200 0.7434 0.6550 0.6873
Rang H:28 12.2300 4.5700 6.5800 0.7372 0.6567 0.6850
Rang H:32 11.9200 4.6400 6.8900 0.7250 0.6404 0.6719
Rang H:36 12.2100 4.6800 6.6000 0.7317 0.6577 0.6828
Rang Q:32 Rang H:12 11.6200 4.6100 7.1900 0.7228 0.6259 0.6594
Rang H:16 12.0700 4.6200 6.7400 0.7304 0.6470 0.6770
Rang H:20 12.0500 4.7900 6.7600 0.7197 0.6461 0.6712
Rang H:24 12.1700 5.0000 6.6400 0.7151 0.6537 0.6741
Rang H:28 12.2200 4.7500 6.5900 0.7301 0.6581 0.6823
Rang H:32 12.4600 4.5700 6.3500 0.7380 0.6704 0.6938
Rang H:36 12.3500 4.8000 6.4600 0.7289 0.6650 0.6849
Rang Q:36 Rang H:12 11.8900 4.4900 6.9200 0.7318 0.6409 0.6735
Rang H:16 12.1600 4.6200 6.6500 0.7273 0.6548 0.6796
Rang H:20 12.2900 5.0000 6.5200 0.7171 0.6599 0.6780
Rang H:24 12.4300 4.6800 6.3800 0.7326 0.6664 0.6891
Rang H:28 12.2000 4.7400 6.6100 0.7243 0.6553 0.6790
Rang H:32 12.4800 4.9300 6.3300 0.7227 0.6682 0.6858
Rang H:36 12.4400 5.0400 6.3700 0.7215 0.6690 0.6842

"Favouring 8, then modulo 4"

In [15]:
zero_five_chr, three_chr = hide.compute_ranks_RWC(ranks_rhythm,ranks_pattern, subdivision=subdivision,
                                                  penalty_weight = 1, penalty_func = "modulo8")
Résultats à 0.5 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 7.4300 5.2900 11.3800 0.5857 0.4045 0.4691
Rang H:16 7.5700 5.6500 11.2400 0.5748 0.4117 0.4711
Rang H:20 7.6700 5.6200 11.1400 0.5823 0.4167 0.4770
Rang H:24 7.7200 5.5400 11.0900 0.5838 0.4180 0.4787
Rang H:28 7.7700 5.6100 11.0400 0.5837 0.4201 0.4800
Rang H:32 7.6900 5.5200 11.1200 0.5810 0.4160 0.4755
Rang H:36 7.9000 5.3500 10.9100 0.5937 0.4258 0.4877
Rang Q:16 Rang H:12 8.2100 5.6000 10.6000 0.5935 0.4458 0.4993
Rang H:16 8.4700 5.7900 10.3400 0.5977 0.4566 0.5092
Rang H:20 8.8700 5.6000 9.9400 0.6114 0.4791 0.5285
Rang H:24 8.8400 5.5000 9.9700 0.6171 0.4780 0.5312
Rang H:28 8.7200 5.6900 10.0900 0.6094 0.4727 0.5241
Rang H:32 8.7100 5.6300 10.1000 0.6136 0.4707 0.5247
Rang H:36 8.8200 5.8100 9.9900 0.6041 0.4748 0.5243
Rang Q:20 Rang H:12 8.9900 5.3500 9.8200 0.6305 0.4848 0.5394
Rang H:16 9.0300 5.7600 9.7800 0.6099 0.4867 0.5324
Rang H:20 9.2200 5.9900 9.5900 0.6099 0.4957 0.5383
Rang H:24 9.3700 5.7400 9.4400 0.6194 0.5039 0.5480
Rang H:28 9.4200 5.8400 9.3900 0.6193 0.5075 0.5497
Rang H:32 9.3200 5.7400 9.4900 0.6265 0.5014 0.5480
Rang H:36 9.3200 5.8700 9.4900 0.6126 0.5033 0.5448
Rang Q:24 Rang H:12 9.1700 5.6600 9.6400 0.6260 0.4960 0.5448
Rang H:16 9.0400 5.9100 9.7700 0.6063 0.4889 0.5339
Rang H:20 9.3600 6.0100 9.4500 0.6104 0.5073 0.5467
Rang H:24 9.6700 5.9700 9.1400 0.6246 0.5213 0.5601
Rang H:28 9.6000 6.1700 9.2100 0.6096 0.5166 0.5514
Rang H:32 9.7000 5.8800 9.1100 0.6270 0.5232 0.5632
Rang H:36 9.8100 5.9500 9.0000 0.6260 0.5279 0.5655
Rang Q:28 Rang H:12 9.3600 5.7100 9.4500 0.6229 0.5048 0.5487
Rang H:16 9.4300 6.3800 9.3800 0.5991 0.5072 0.5415
Rang H:20 9.5600 6.1900 9.2500 0.6045 0.5139 0.5485
Rang H:24 9.5900 6.3600 9.2200 0.6030 0.5165 0.5498
Rang H:28 10.0000 6.0800 8.8100 0.6234 0.5364 0.5694
Rang H:32 9.6300 6.2800 9.1800 0.6065 0.5184 0.5520
Rang H:36 9.9800 5.9700 8.8300 0.6245 0.5383 0.5708
Rang Q:32 Rang H:12 9.4900 5.9400 9.3200 0.6161 0.5128 0.5509
Rang H:16 9.8100 6.2300 9.0000 0.6180 0.5275 0.5618
Rang H:20 9.7900 6.0100 9.0200 0.6164 0.5262 0.5613
Rang H:24 9.8400 6.5100 8.9700 0.6023 0.5252 0.5535
Rang H:28 9.7000 6.4500 9.1100 0.6012 0.5195 0.5503
Rang H:32 10.1100 6.0400 8.7000 0.6266 0.5450 0.5767
Rang H:36 10.0200 6.2300 8.7900 0.6185 0.5404 0.5680
Rang Q:36 Rang H:12 9.3700 6.2400 9.4400 0.5997 0.5050 0.5408
Rang H:16 9.7100 6.1800 9.1000 0.6082 0.5227 0.5549
Rang H:20 9.8100 6.4700 9.0000 0.5994 0.5277 0.5551
Rang H:24 10.1100 6.3500 8.7000 0.6140 0.5410 0.5681
Rang H:28 9.5600 6.6700 9.2500 0.5861 0.5160 0.5423
Rang H:32 9.6500 6.7900 9.1600 0.5835 0.5160 0.5412
Rang H:36 9.9800 6.6600 8.8300 0.5988 0.5370 0.5598
Résultats à 3 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 9.4300 3.2900 9.3800 0.7532 0.5095 0.5958
Rang H:16 9.8800 3.3400 8.9300 0.7608 0.5353 0.6172
Rang H:20 9.9300 3.3600 8.8800 0.7625 0.5379 0.6195
Rang H:24 9.9400 3.3200 8.8700 0.7600 0.5369 0.6185
Rang H:28 10.0100 3.3700 8.8000 0.7600 0.5407 0.6212
Rang H:32 9.7100 3.5000 9.1000 0.7468 0.5240 0.6044
Rang H:36 10.0200 3.2300 8.7900 0.7633 0.5405 0.6228
Rang Q:16 Rang H:12 10.3400 3.4700 8.4700 0.7599 0.5593 0.6321
Rang H:16 10.8000 3.4600 8.0100 0.7712 0.5812 0.6522
Rang H:20 11.0900 3.3800 7.7200 0.7796 0.5983 0.6657
Rang H:24 10.9900 3.3500 7.8200 0.7787 0.5938 0.6641
Rang H:28 11.0100 3.4000 7.8000 0.7746 0.5953 0.6626
Rang H:32 10.8300 3.5100 7.9800 0.7676 0.5818 0.6515
Rang H:36 11.0600 3.5700 7.7500 0.7671 0.5948 0.6606
Rang Q:20 Rang H:12 10.7100 3.6300 8.1000 0.7586 0.5761 0.6441
Rang H:16 11.3400 3.4500 7.4700 0.7799 0.6119 0.6746
Rang H:20 11.3900 3.8200 7.4200 0.7639 0.6125 0.6690
Rang H:24 11.4300 3.6800 7.3800 0.7675 0.6153 0.6734
Rang H:28 11.6200 3.6400 7.1900 0.7733 0.6265 0.6820
Rang H:32 11.1400 3.9200 7.6700 0.7499 0.5980 0.6549
Rang H:36 11.5200 3.6700 7.2900 0.7687 0.6207 0.6766
Rang Q:24 Rang H:12 11.0200 3.8100 7.7900 0.7540 0.5936 0.6536
Rang H:16 11.3000 3.6500 7.5100 0.7642 0.6100 0.6690
Rang H:20 11.5200 3.8500 7.2900 0.7584 0.6208 0.6732
Rang H:24 11.7500 3.8900 7.0600 0.7641 0.6316 0.6813
Rang H:28 11.8500 3.9200 6.9600 0.7591 0.6365 0.6826
Rang H:32 11.6900 3.8900 7.1200 0.7590 0.6282 0.6785
Rang H:36 11.7400 4.0200 7.0700 0.7579 0.6320 0.6799
Rang Q:28 Rang H:12 11.2500 3.8200 7.5600 0.7548 0.6060 0.6613
Rang H:16 11.7400 4.0700 7.0700 0.7545 0.6324 0.6775
Rang H:20 11.7600 3.9900 7.0500 0.7520 0.6320 0.6776
Rang H:24 12.0100 3.9400 6.8000 0.7612 0.6449 0.6894
Rang H:28 12.0000 4.0800 6.8100 0.7546 0.6448 0.6865
Rang H:32 11.7100 4.2000 7.1000 0.7406 0.6288 0.6715
Rang H:36 11.9000 4.0500 6.9100 0.7478 0.6416 0.6816
Rang Q:32 Rang H:12 11.4300 4.0000 7.3800 0.7439 0.6146 0.6625
Rang H:16 11.8600 4.1800 6.9500 0.7465 0.6363 0.6780
Rang H:20 11.7300 4.0700 7.0800 0.7454 0.6297 0.6740
Rang H:24 11.9200 4.4300 6.8900 0.7357 0.6393 0.6746
Rang H:28 11.8900 4.2600 6.9200 0.7429 0.6377 0.6771
Rang H:32 12.1500 4.0000 6.6600 0.7559 0.6534 0.6931
Rang H:36 12.1200 4.1300 6.6900 0.7535 0.6524 0.6886
Rang Q:36 Rang H:12 11.5900 4.0200 7.2200 0.7464 0.6250 0.6703
Rang H:16 11.8800 4.0100 6.9300 0.7486 0.6394 0.6803
Rang H:20 12.0100 4.2700 6.8000 0.7418 0.6445 0.6811
Rang H:24 12.2100 4.2500 6.6000 0.7478 0.6552 0.6896
Rang H:28 11.9800 4.2500 6.8300 0.7422 0.6438 0.6802
Rang H:32 12.2600 4.1800 6.5500 0.7504 0.6553 0.6910
Rang H:36 12.2300 4.4100 6.5800 0.7396 0.6578 0.6880

"Favouring little segments of 8, then 4"

In [16]:
zero_five_chr, three_chr = hide.compute_ranks_RWC(ranks_rhythm,ranks_pattern, subdivision=subdivision,
                                                  penalty_weight = 1, penalty_func = "moduloSmall8and4")
Résultats à 0.5 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 8.9000 8.3600 9.9100 0.5201 0.4795 0.4936
Rang H:16 8.9200 8.6100 9.8900 0.5141 0.4812 0.4918
Rang H:20 9.1000 8.4000 9.7100 0.5267 0.4901 0.5023
Rang H:24 8.9700 8.5900 9.8400 0.5178 0.4823 0.4944
Rang H:28 9.0500 8.5800 9.7600 0.5198 0.4868 0.4978
Rang H:32 8.8900 8.6000 9.9200 0.5134 0.4773 0.4889
Rang H:36 9.2300 8.4300 9.5800 0.5266 0.4946 0.5051
Rang Q:16 Rang H:12 9.2500 8.7100 9.5600 0.5185 0.4996 0.5026
Rang H:16 9.3800 8.6200 9.4300 0.5285 0.5045 0.5109
Rang H:20 9.8900 8.3300 8.9200 0.5474 0.5306 0.5331
Rang H:24 9.7800 8.2400 9.0300 0.5474 0.5263 0.5316
Rang H:28 9.7900 8.3200 9.0200 0.5485 0.5267 0.5316
Rang H:32 9.4500 8.6100 9.3600 0.5315 0.5106 0.5155
Rang H:36 9.8600 8.3800 8.9500 0.5455 0.5298 0.5326
Rang Q:20 Rang H:12 10.0600 8.1100 8.7500 0.5637 0.5376 0.5449
Rang H:16 9.6700 8.5500 9.1400 0.5341 0.5178 0.5207
Rang H:20 10.0700 8.5000 8.7400 0.5509 0.5396 0.5399
Rang H:24 10.2000 8.2900 8.6100 0.5567 0.5475 0.5473
Rang H:28 10.2500 8.2000 8.5600 0.5638 0.5499 0.5518
Rang H:32 10.2900 8.1300 8.5200 0.5664 0.5502 0.5528
Rang H:36 10.0900 8.3300 8.7200 0.5550 0.5435 0.5443
Rang Q:24 Rang H:12 10.0200 8.4400 8.7900 0.5524 0.5397 0.5406
Rang H:16 10.0500 8.4600 8.7600 0.5502 0.5399 0.5403
Rang H:20 10.0400 8.6800 8.7700 0.5443 0.5410 0.5375
Rang H:24 10.2600 8.6300 8.5500 0.5528 0.5503 0.5465
Rang H:28 10.2400 8.7000 8.5700 0.5486 0.5492 0.5439
Rang H:32 10.1600 8.6900 8.6500 0.5477 0.5468 0.5429
Rang H:36 10.5600 8.2500 8.2500 0.5702 0.5643 0.5623
Rang Q:28 Rang H:12 10.0300 8.5600 8.7800 0.5453 0.5395 0.5369
Rang H:16 10.0300 8.9300 8.7800 0.5380 0.5358 0.5320
Rang H:20 10.1300 8.8300 8.6800 0.5390 0.5422 0.5357
Rang H:24 10.2700 8.7500 8.5400 0.5450 0.5498 0.5431
Rang H:28 10.4500 8.6400 8.3600 0.5557 0.5600 0.5527
Rang H:32 10.4500 8.6400 8.3600 0.5518 0.5595 0.5514
Rang H:36 10.5500 8.6000 8.2600 0.5576 0.5676 0.5575
Rang Q:32 Rang H:12 10.3100 8.4400 8.5000 0.5577 0.5546 0.5501
Rang H:16 10.2400 8.9500 8.5700 0.5447 0.5485 0.5414
Rang H:20 10.2200 8.7700 8.5900 0.5461 0.5453 0.5408
Rang H:24 10.3400 9.1000 8.4700 0.5368 0.5502 0.5384
Rang H:28 10.4100 8.8700 8.4000 0.5441 0.5547 0.5447
Rang H:32 10.5400 8.6100 8.2700 0.5547 0.5643 0.5553
Rang H:36 10.4100 8.8900 8.4000 0.5453 0.5596 0.5471
Rang Q:36 Rang H:12 10.0600 8.7500 8.7500 0.5404 0.5385 0.5350
Rang H:16 10.0000 9.0000 8.8100 0.5307 0.5369 0.5292
Rang H:20 10.3400 9.0500 8.4700 0.5405 0.5522 0.5413
Rang H:24 10.4800 8.9900 8.3300 0.5415 0.5585 0.5452
Rang H:28 10.1300 9.3700 8.6800 0.5234 0.5435 0.5293
Rang H:32 10.1800 9.2900 8.6300 0.5281 0.5423 0.5304
Rang H:36 10.4200 9.2700 8.3900 0.5338 0.5569 0.5406
Résultats à 3 secondes Vrai Positifs Faux Positifs Faux Négatifs Precision Rappel F mesure
Rang Q:12 Rang H:12 11.4500 5.8100 7.3600 0.6730 0.6134 0.6353
Rang H:16 11.6900 5.8400 7.1200 0.6779 0.6269 0.6450
Rang H:20 11.8300 5.6700 6.9800 0.6900 0.6365 0.6555
Rang H:24 11.9400 5.6200 6.8700 0.6938 0.6407 0.6598
Rang H:28 11.9000 5.7300 6.9100 0.6881 0.6395 0.6567
Rang H:32 11.4900 6.0000 7.3200 0.6676 0.6170 0.6342
Rang H:36 12.1000 5.5600 6.7100 0.6959 0.6488 0.6655
Rang Q:16 Rang H:12 11.9200 6.0400 6.8900 0.6747 0.6420 0.6503
Rang H:16 12.1800 5.8200 6.6300 0.6897 0.6546 0.6653
Rang H:20 12.4200 5.8000 6.3900 0.6907 0.6654 0.6712
Rang H:24 12.3900 5.6300 6.4200 0.6994 0.6666 0.6763
Rang H:28 12.4700 5.6400 6.3400 0.7010 0.6702 0.6783
Rang H:32 12.1700 5.8900 6.6400 0.6850 0.6536 0.6623
Rang H:36 12.5300 5.7100 6.2800 0.6970 0.6729 0.6787
Rang Q:20 Rang H:12 12.2900 5.8800 6.5200 0.6876 0.6580 0.6659
Rang H:16 12.4500 5.7700 6.3600 0.6928 0.6689 0.6746
Rang H:20 12.6200 5.9500 6.1900 0.6921 0.6761 0.6774
Rang H:24 12.6300 5.8600 6.1800 0.6923 0.6783 0.6794
Rang H:28 12.7000 5.7500 6.1100 0.7005 0.6815 0.6849
Rang H:32 12.5100 5.9100 6.3000 0.6865 0.6691 0.6713
Rang H:36 12.6200 5.8000 6.1900 0.6967 0.6792 0.6819
Rang Q:24 Rang H:12 12.3900 6.0700 6.4200 0.6827 0.6625 0.6656
Rang H:16 12.7600 5.7500 6.0500 0.6987 0.6842 0.6856
Rang H:20 12.7900 5.9300 6.0200 0.6935 0.6855 0.6831
Rang H:24 12.8800 6.0100 5.9300 0.6930 0.6910 0.6857
Rang H:28 12.8300 6.1100 5.9800 0.6878 0.6896 0.6827
Rang H:32 12.6700 6.1800 6.1400 0.6812 0.6794 0.6748
Rang H:36 12.8000 6.0100 6.0100 0.6914 0.6852 0.6823
Rang Q:28 Rang H:12 12.5300 6.0600 6.2800 0.6846 0.6721 0.6711
Rang H:16 12.7000 6.2600 6.1100 0.6822 0.6802 0.6746
Rang H:20 12.9600 6.0000 5.8500 0.6912 0.6919 0.6853
Rang H:24 12.9800 6.0400 5.8300 0.6911 0.6943 0.6869
Rang H:28 12.9200 6.1700 5.8900 0.6871 0.6902 0.6823
Rang H:32 12.7400 6.3500 6.0700 0.6747 0.6814 0.6727
Rang H:36 12.9800 6.1700 5.8300 0.6858 0.6961 0.6846
Rang Q:32 Rang H:12 12.7400 6.0100 6.0700 0.6878 0.6825 0.6777
Rang H:16 12.7900 6.4000 6.0200 0.6766 0.6839 0.6737
Rang H:20 12.7100 6.2800 6.1000 0.6765 0.6775 0.6707
Rang H:24 12.8900 6.5500 5.9200 0.6711 0.6891 0.6736
Rang H:28 12.8000 6.4800 6.0100 0.6697 0.6842 0.6709
Rang H:32 13.0900 6.0600 5.7200 0.6898 0.7000 0.6894
Rang H:36 13.0600 6.2400 5.7500 0.6848 0.7000 0.6855
Rang Q:36 Rang H:12 12.5500 6.2600 6.2600 0.6745 0.6743 0.6687
Rang H:16 12.6700 6.3300 6.1400 0.6719 0.6797 0.6699
Rang H:20 12.7400 6.6500 6.0700 0.6652 0.6802 0.6664
Rang H:24 12.9600 6.5100 5.8500 0.6731 0.6930 0.6770
Rang H:28 12.8700 6.6300 5.9400 0.6645 0.6907 0.6719
Rang H:32 12.9700 6.5000 5.8400 0.6738 0.6929 0.6772
Rang H:36 13.1200 6.5700 5.6900 0.6756 0.7017 0.6824

Conclusion

In conclusion, we systematically found that our best results at 0.5 seconds with the modulo functions are higher than the ones obtained with the symmetric functions centered on 8 (either when varying $\lambda$ or the ranks). At 3 seconds, it is less clear whether there is a best function, as best results are generally close.

In that sense, we chose to keep only the modulo functions, and more particularily "favouring 8, then modulo 4", as it gave the best results in this category (especially at 0.5 seconds).

References

[1] Sargent, G., Bimbot, F., & Vincent, E. (2016). Estimating the structural segmentation of popular music pieces under regularity constraints. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(2), 344-358.